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SOME STEADY-STATE PROBLEMS IN HEAT CONDUCTION THEORY FOR
WEDGES WITH BOUNDARY CONDITIONS OF THE THIRD KIND
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It is shown that a steady-state problem of heat conduction theory for

a wedge releasing heat according to Newton's law is reduced, by means
of an integral transformation, to solution of a certain functional equa-
tion. For a wedge angle of 2y = #/m (m = 1,2, 3, ...) an exact solu-
tion of the latter equation is found, and formulas for the temperature
distribution are obtained.

In this paper the method of solution of heat conduc-
tion theory problems described in [1] is used to solve
stationary problems for wedge-shaped bodies,

. Ou
Au:—-% inD 51—+hu]F=0, (1)

where Q is the amount of heat released in unit volume
and unit time, K is the thermal conductivity, and h
is a positive constant.

Application of a Riemann~Mellin integral transfor-
mation allows us to reduce the problem (1) for a
wedge to solution of a first-order functional equation.
We have examined the case of a linear source located
on the wedge axis of symmetry. For wedge angles of
2y = 7/m (m =1,2,3...) the solution of the functional
equation is expressed in terms of the incomplete gam-
ma function, and a complex potential of the problem
is obtained. The formulas derived in the special cases
m =1 and m = 2 go over to known expressions for the
potential in a half-space and a rectangular wedge.
Graphs are presented for the temperature distribution
along the wedge surface for the cases m =1, 2, 3
and for certain values of the dimensionless parameter
ha [2].

§1. Statement of the problem, and its reduction to
the functional equation. We will examine a wedge with
a vertex angle 2y within which is located a heat source
symmetrical relative to the edges (¢ =0, p = a), the
source being regarded as the limiting case of a prism,
and releasing a constant amount of heat per unit length.
If we choose a system of cylindrical coordinates p,¢,
z (the z axis coincides with the edge of the wedge, and
the plane ¢ = 0 is its plane of symmeiry [Fig.1]), the
problem reduces to solution of the heat conduction
equation
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where T is the unknown temperature, h is the heat
transfer coefficient
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Fig. 1, Wedge with vertex angle 2v.

and g is the amount of heat emitted by the source in
unit time per unit length.
Applying a Mellin transformation to (2) and (3) and
passing to the limit Aa — 0, we obtain
d*T
d¢?
— I L sp<e< —Ap  (4)
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with the condition
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where
T= { 91T (pg)dp, 0<Rep<o. (6)
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The integral of (4), even with respect to ¢, will be*

4 9@sinp(y—jeD)

T(pg)=A(p)cospe 5K c0s Py

Substituting (7) into (5), we have for A(p) the func-
tional equation

qa? 8)

hA(p +1)cos (p +1)y = pA(p)sinpy + ~———— . (
2K cos py

We introduce a new unknown function u(p), con-
nected with A(p) by the relation

u(p) = ;("— A(p) cos py. (9)

Then (8) may be written in the form

af

hu(p+1) = ptgpyu(p) +
Z2cos py

(10)

If there is a solution of the functional equation (10),
then the temperature is found from the Riemann-Mel-
lin inversion formula

T=-21—_5 p?T(pp)dp, 0 <Rep<o. (11)
1y

L

§2. Solution of the functional equation. We will
examine the solution of the functional Eq. (10) under
the assumption that 2y = 7/m (m = 1,2,3,...,N) and
show that in this case the solution may be expressed
in finite form in terms of the incomplete gamma func~
tion. .

The general solution of the functional Eq. (10) will
be [5]

u(p) = u(p)+ Cuy(p), (12)

where u(p) is a particular solution of the inhomoge-
neous equation; uy(p) is a solution of the correspond-
ing homogeneous equation; C is an arbitrary function
with period unity.

It is not difficult to verify that

T p— : (13)
he I sin(p + k)y
k=0
where v = 1/2m.
To find the particular solution of (10), we introduce
the auxiliary functions

F(p, o, B) = 5o (explhaexp ) — fal T [p: haexp G p)l +

+explhaexp(—jB) +jal-Tip kaexp(—jp)l} (14)

*It is necessary to go to the limit A¢ — 0,

INZHENERNO-~FIZICHESKII ZHURNAL

(where I'(p;z) is the incomplete gamma function) and

m—1

@, (p) =272 [ sin(p -+ k)

2 om=1,2 3 ...(15)
£=1 2m

Function (14) satisfies the equation
hF(p+1; @ B)=pF(p;, «; B) +aPcos(pP—a) (16)
and admits the integral representation [4]
F(p; o; )= TSR
n

exp (—wvacosB)cos(vasinp + a) dv. (17)
VP (v -+ h) ‘
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Function (15) satisfies the equation
®p(p +1)sin(p +1)y =@y (p)cospy, (18)

wherey =7/2m, m=1, 2, 3, ..., N.

A solution of (18) may be obtained independently of
(15) in the form of a trigonometrical polynomial by
using the method described in [1], which allows one
to obtain the expansion
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4 2s
n=}
s=1,2 3., (19)
s—n 1 s
where b, = [] ctgky; b= > [T cteky: v =xn/2m.
=1 k=1

Then the general solution of (10) may be written in
the form

5_] b,F (p; @y B +CT(p)

n

(20

uip) =

m--1

2" [ sin(p+R)v
k=0

where

vy==2m, m=1,2,3, ..., N;

s—n s
ba= 1 cteky; b= — ] ctgky;
k=1 2 k=1

a,=nn/2; B,=2ny, n=0, 1, 2, ..., s,
m=2-+1 s5=0,1, 2..;
t=02n—D)=/4, p,=02n—1y, n=1, 2, 3, ..., 5,

m=2, s=1, 2, 3....
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Formula (20) is a generalization of the well-known
cases of a half-plane (m = 1) and a rectangular wedge
(m = 2). In these cases C = 0.*

§3. Temperature distribution in a wedge with ver-
tex angle 2y = 7/m (m =1,2,3,...,N). The formal
solution of the problem examined may be obtained
with the aid of the Riemann-Mellin inversion formula

T = ‘1_ (_a_)l’sm('v—’lq’l)dp+
4AniK P pcospy

+S‘ p—Pu(p) Lospe dp}:
cospy

L

=T+ T, (21)
Evaluation of the first integral gives [3]

q_ g, O 2da7prmcosmg 4 o
4n K p™—2mpmcosm @ + o¥m

T, = . (22)

We will briefly examine one possible method of cal-
culating the second contour integral, for which the
following equalities are required [4]:

m—1 o me—l
sing p = 2% [ sin(p + k) fn [1 cos(p+ k)Z—nn?

k=0 k=0
m=1,2 3 .. N (23)

= Lp)eos(pp+a) ,
i ) (vp)?

= exp (— vp cos B) cos (vp sin f + a), (24)

where Rep>0; |p] < =/2.
From (17), (19), (20), and (23) we obtain

cos
uip) =L2.
cospy

_ 2T (p) j' {2 2 baby, exp(—wvacosf,) X (25)
0 nok

T

X cos(vasing, + a,) - cos[(B; + @) p + alv (v + h)} dw.

Substituting (25) into (21) and changing the order
of integration, we find from (24) that

_% fyy _

~vpcos (B + ¢)} X
X cos(vasinf, + a,)x

X cos [vp sin (B = @) + ol + h)} dv.  (26)

The integral in {26) may be calculated in the com-~
plex plane £ = p exp (j¥) and expressed in terms of the

*It may be shown that C = 0 for any m.,
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integral exponential function E(z) [6]. Following sim-~
ple transformations the complex potential may be
written in the form*

w=9 i Ertat +
2K  Em—am

q $ s ' . o
+;—K 2’; g bbyexpl+ja, &+ jo, + haexp(F j )+

+hEexp(T iBlX Ethaexp (T jB,) +hEexp(F jBe)). (27)

where

s—n

by= (] ctgky, b=
k=1

s
[l cteky, y=n2m, m=1,23. .., N;

1
2 k=1

f.=2ny, a,=nxn/2, n=0,
1,2, .,s5 m=25+1,5=0,1, 2 ...;
B,=(2n —1)y, a,=(2n —1)n/4,

n=1,2 3, ..., 5, m=2s,

S=1, 2, 3 eeey

E, (@) = j fi&f;—@- du.

k4

Figure 2 shows the dependence of heat flux density
at the wedge tip (¢ =1v; p —~ 0) on the parameter ha.
The limiting values ha — « and ha — 0 of the param-
eter correspond to the well-known cases of boundary
conditions of the first and second kinds. Figure 3
shows the derived curves of temperature distribution
for the cases m =1, 2, 3 and for two values of the
parameter ha. The maximum value of temperature
is reached at approximately the points of projection
of the source on the wedge edge.

SUMMARY

The method of integral transforms with subsequent
reduction of the problem to solution of the functional
equations permits us the effective solution of certain
problems in heat conduction theory with a boundary
condition of the third kind {1]. Using this method, it
is not difficult to generalize the results obtained above
and to construct the Green's function for a plane sta-
tionary problem in potential theory for wedge-shaped
regions with a boundary condition of the third kind.

*We have in mind the following combination of signs:

(“‘f‘zn; — i3 )‘; (*iln; 'i‘iﬁn);
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